
165

RS-232

16.1 Introduction

RS-232 is one of the most widely used techniques used to interface external
equipment to computers. It uses serial communications where one bit is sent
along a line, at a time. This differs from parallel communications which sends
one or more bytes, at a time. The main advantage that serial communications
has over parallel communications is that a single wire is needed to transmit
and another to receive. RS-232 is a de facto standard that most computer and
instrumentation companies comply with. It was standardized in 1962 by the
Electronics Industries Association (EIA). Unfortunately this standard only
allows short cable runs with low bit rates. The standard RS-232 only allows a
bit rate of 19 600 bps for a maximum distance of 20 metres. New serial com-
munications standards, such as RS-422 and RS-449, allow very long cable
runs and high bit rates. For example, RS-422 allows a bit rate of up to 10
Mbps over distances up to 1 mile, using twisted-pair, coaxial cable or optical
fibres. The new standards can also be used to create computer networks. This
chapter introduces the RS-232 standard and gives simple programs which can
be used to transmit and receive using RS-232. The following chapter shows
how Turbo Pascal can be used to transmit data through the parallel port.

16.2 Electrical characteristics

16.2.1 Line voltages

The electrical characteristics of RS-232 define the minimum and maximum
voltages of a logic ‘1’ and ‘0’. A logic ‘1’ ranges from –3 V to –25 V, but will
typically be around –12 V. A logical ‘0’ ranges from 3 V to 25 V, but will
typically be around +12 V. Any voltage between –3 V and +3 V has an inde-
terminate logical state. If no pulses are present on the line the voltage level is
equivalent to a high level, that is –12 V. A voltage level of 0 V at the receiver
is interpreted as a line break or a short circuit. Figure 16.1 shows an example
transmission.

16

166 Mastering Pascal

+12V

–12V

1 10 0010
Inactive condition

Figure 16.1 RS-232 voltage levels

16.2.2 DB25S connector

The DB25S connector is a 25-pin D-type connector and gives full RS-232
functionality. Figure 16.2 shows the pin number assignment. A DCE (the ter-
minating cable) connector has a male outer casing with female connection
pins. The DTE (the computer) has a female outer casing with male connecting
pins. There are three main signal types: control, data and ground. Table 16.1
lists the main connections. Control lines are active HIGH, that is they are
HIGH when the signal is active and LOW when inactive.

113

14

23456789101112

1516171819202122232425

Pin Signal
2 TxData
3 RxData
4 RTS
5 CTS
6 DSR
7 GND
20 DTR

Figure 16.2 RS-232 DB25S connector

16.2.3 DB9S Connector

The 25-pin connector is the standard for RS-232 connections but as electronic
equipment becomes smaller there is a need for smaller connectors. For this
purpose most PCs now use a reduced function 9-pin D-type connector rather
than the full function 25-way D-type. As with the 25-pin connector the DCE
(the terminating cable) connector has a male outer casing with female connec-
tion pins. The DTE (the computer) has a female outer casing with male con-
necting pins. Figure 16.3 shows the main connections.

1

6

2345

789

Pin Signal
2 RxData
3 TxData
4 DTR
5 GND
6 DSR
7 RTS
8 CTS

Figure 16.3 RS-232 DB9S Interface

RS-232 167

Table 16.1 Main pin connections used in 25-pin connector

Pin Name Abbreviation Functionality
1 Frame

Ground
FG This ground normally connects the outer

sheath of the cable and to earth ground

2 Transmit
Data

TD Data is sent from the DTE (computer or
terminal) to a DCE via TD

3 Receive
Data

RD Data is sent from the DCE to a DTE (com-
puter or terminal) via RD

4 Request To
Send

RTS DTE sets this active when it is ready to
transmit data

5 Clear To
Send

CTS DCE sets this active to inform the DTE that
it is ready to receive data

6 Data Set
Ready

DSR Similar functionality to CTS but activated
by the DTE when it is ready to receive data

7 Signal
Ground

SG All signals are referenced to the signal
ground (GND)

20 Data
Terminal
Ready

DTR Similar functionality to RTS but activated
by the DCE when it wishes to transmit data

16.2.4 PC connectors

All PCs have at least one serial communications port. The primary port is
named COM1: and the secondary is COM2:. There are two types of connec-
tors used in RS-232 communications, these are the 25- and 9-way D-type.
Most modern PCs use either a 9-pin connector for the primary (COM1:) serial
port and a 25-pin for a secondary serial port (COM2:), or they use two 9-pin
connectors for serial ports. The serial port can be differentiated from the par-
allel port in that the 25-pin parallel port (LPT1:) is a 25-pin female connector
on the PC and a male connector on the cable. The 25-pin serial connector is a
male on the PC and a female on the cable. The different connector types can
cause problems in connecting devices. Thus a 25-to-9 pin adapter is a useful
attachment, especially to connect a serial mouse to a 25-pin connector.

168 Mastering Pascal

16.3 Frame format

RS-232 uses asynchronous communications which has a start-stop data for-
mat. Each character is transmitted one at a time with a delay between them.
This delay is called the inactive time and is set at a logic level high (–12 V) as
shown in Figure 16.4. The transmitter sends a start bit to inform the receiver
that a character is to be sent in the following bit transmission. This start bit is
always a ‘0’. Next, 5, 6 or 7 data bits are sent as a 7-bit ASCII character, fol-
lowed by a parity bit and finally either 1, 1.5 or 2 stop bits. Figure 16.4 shows
a frame format and an example transmission of the character ‘A’, using odd
parity. The rate of transmission is set by the timing of a single bit. Both the
transmitter and receiver need to be set to the same bit-time interval. An inter-
nal clock on both sets this interval. These only have to be roughly synchro-
nized and approximately at the same rate as data is transmitted in relatively
short bursts.
 Error control is data added to transmitted data in order to detect or correct
an error in transmission. RS-232 uses a simple technique known as parity to
provide a degree of error detection.
 A parity bit is added to transmitted data to make the number of 1s sent ei-
ther even (even parity) or odd (odd parity). A single parity bit can only detect
an odd number of errors, that is, 1, 3, 5, and so on. If there is an even number
of bits in error then the parity bit will be correct and no error will be detected.
This type of error coding is not normally used on its own where there is the
possibility of several bits being in error.

0 b0 b1 P S1 S2 1

start
bit

ASCII
character

parity
bit

stop
bit(s)

0 1 0 0 0 0 0 1 1 1 1

‘A’ (100 0001)

b2 b3 b4 b5 b6

Figure 16.4 RS-232 frame format

RS-232 169

Baud rate

One of the main parameters which specify RS-232 communications is the rate
of transmission at which data is transmitted and received. It is important that
the transmitter and receiver operate at, roughly, the same speed.
 For asynchronous transmission the start and stop bits are added in addition
to the 7 ASCII character bits and the parity. Thus a total of 10 bits are re-
quired to transmit a single character. With 2 stop bits, a total of 11 bits are
required. If 10 characters are sent every second and if 11 bits are used for each
character, then the transmission rate is 110 bits per second (bps). Table 16.2
lists how the bit rate relates to the characters sent per second (assuming 10
transmitted bits per character). The bit rate is measured in bits per second
(bps).

 Bits
ASCII character 7
Start bit 1
Stop bit 2
Total 10

Table 16.2 Bits per second related to characters sent per second

Speed(bps) Characters/second
300 30
1200 120
2400 240

 In addition to the bit rate, another term used to describe the transmission
speed is the baud rate. The bit rate refers to the actual rate at which bits are
transmitted, whereas the baud rate relates to the rate at which signalling ele-
ments, used to represent bits, are transmitted. Since one signalling element
encodes one bit, the two rates are then identical. Only in modems does the bit
rate differ from the baud rate.

16.4 Communications between two nodes

RS-232 is intended to be a standard but not all manufacturers abide by it.
Some implement the full specification while others implement just a partial
specification. This is mainly because not every device requires the full func-
tionality of RS-232, for example a modem requires many more control lines
than a serial mouse.
 The rate at which data is transmitted and the speed at which the transmitter
and receiver can transmit/receive the data dictates whether data handshaking
is required.

170 Mastering Pascal

16.4.1 Handshaking

In the transmission of data there can be either no handshaking, hardware
handshaking or software handshaking. If no handshaking is used then the re-
ceiver must be able to read the received characters before the transmitter
sends another. The receiver may buffer the received character and store it in a
special memory location before it is read. This memory location is named the
receiver buffer. Typically, it may only hold a single character. If it is not emp-
tied before another character is received then any character previously in the
buffer will be overwritten. An example of this is illustrated in Figure 16.5. In
this case the receiver has read the first two characters successfully from the
receiver buffer, but it did not read the third character as the fourth transmitted
character has overwritten it in the receiver buffer. If this condition occurs then
some form of handshaking must be used to stop the transmitter sending char-
acters before the receiver has had time to service the received characters.
 Software handshaking involves sending special control characters. These
include the DC1-DC4 control characters. Hardware handshaking involves the
transmitter asking the receiver if it is ready to receive data. If the receiver
buffer is empty it will inform the transmitter that it is ready to receive data.
Once the data is transmitted and loaded into the receiver buffer the transmitter
is informed not to transmit any more characters until the character in the re-
ceiver buffer has been read. The main hardware handshaking lines used for
this purpose are:

• CTS – Clear To Send.
• RTS – Ready To Send.
• DTR – Data Terminal Ready.
• DSR – Data Set Ready.

Transmitter Receiver

Receiver
reads from
buffer

receiver
buffer

transmitted
characters

transmitter
buffer

Receiver has
failed to read the
buffer before another
character has been
received

Figure 16.5 Transmission and reception of characters

RS-232 171

16.4.2 RS-232 set-up

Windows 95/NT allows the serial port setting to be set by selecting Control
Panel → System → Device Manager → Ports (COM and LPT) → Port Set-
tings. The settings of the communications port (the IRQ and the port address)
can be changed by selecting Control Panel → System → Device Manager →
Ports (COM and LPT) → Resources for IRQ and Addresses. Figure 16.6
shows example parameters and settings. The selectable baud rates are typi-
cally 110, 300, 600, 1200, 2400, 4800, 9600 and 19200 baud for an 8250-
based device. With a 16650 compatible UART speed also gives enhanced
speeds of 38400, 57600, 115200, 230400, 460800 and 921600 baud. Notice
that the flow control can either be set to software handshaking (Xon/Xoff),
hardware handshaking or none.
 The parity bit can either be set to none, odd, even, mark or space. A mark
in the parity option sets the parity bit to a ‘1’ and a space sets it to a ‘0’.
 In this case COM1: is set at 9600 baud, 8 data bits, no parity, 1 stop bit and
no parity checking.

16.4.3 Simple no-handshaking communications

In this form of communication it is assumed that the receiver can read the re-
ceived data from the receiver buffer before another character is received. Data
is sent from a TD pin connection of the transmitter and is received in the RD
pin connection at the receiver. When a DTE (such as a computer) connects to
another DTE, then the transmit line (TD) on one is connected to the receive
(RD) of the other and vice versa. Figure 16.7 shows the connections between
the nodes.

Figure 16.6 Changing port setting and parameters

172 Mastering Pascal

TD

RD

RTS

CTS

DTR

DSR

GND

TD

RD

RTS

CTS

DTR

DSR

GND

3

2

7

8

4

6

5

3

2

7

8

4

6

5

9-pin 9-pin

TD

RD

RTS

CTS

DTR

DSR

GND

TD

RD

RTS

CTS

DTR

DSR

GND

3

2

7

8

4

6

5

2

3

4

5

20

6

7

9-pin 25-pin

Figure 16.7 RS-232 connections with no hardware handshaking

16.4.4 Software handshaking

There are two ASCII characters that start and stop communications. These are
X-ON (^S , Cntrl-S or ASCII 11) and X-OFF (^Q, Cntrl-Q or ASCII 13).
When the transmitter receives an X-OFF character it ceases communications
until an X-ON character is sent. This type of handshaking is normally used
when the transmitter and receiver can process data relatively quickly. Nor-
mally, the receiver will also have a large buffer for the incoming characters.
When this buffer is full it transmits an X-OFF. After it has read from the
buffer the X-ON is transmitted, see Figure 16.8.

ReceiverTransmitter

X-OFF

X-ON

Data
transmission

Data
transmission

Figure 16.8 Software handshaking using X-ON and X-OFF

16.4.5 Hardware handshaking

Hardware handshaking stops characters in the receiver buffer from being
overwritten. The control lines used are all active HIGH. When a node wishes

RS-232 173

to transmit data it asserts the RTS line active (that is, HIGH). It then monitors
the CTS line until it goes active (that is, HIGH). If the CTS line at the trans-
mitter stays inactive then the receiver is busy and cannot receive data, at the
present. When the receiver reads from its buffer the RTS line will automati-
cally go active indicating to the transmitter that it is now ready to receive a
character.
 Receiving data is similar to the transmission of data, but the lines DSR and
DTR are used instead of RTS and CTS. When the DCE wishes to transmit to
the DTE the DSR input to the receiver will become active. If the receiver can-
not receive the character it will set the DTR line inactive. When it is clear to
receive it sets the DTR line active and the remote node then transmits the
character. The DTR line will be set inactive until the character has been proc-
essed.

16.4.6 Two-way communications with handshaking

For full handshaking of the data between two nodes the RTS and CTS lines
are crossed over (as are the DTR and DSR lines). This allows for full remote
node feedback (see Figure 16.9).

16.5 Programming RS-232

Normally, serial transmission is achieved via the RS-232 standard. Although
25 lines are defined usually only a few are used. Data is sent along the TD line
and received by the RD line with a common ground return. The other lines
used for handshaking are RTS (Ready to Send) which is an output signal to
indicate that data is ready to be transmitted and CTS (Clear to Send), which is
an input indicating that the remote equipment is ready to receive data.

DTE DTE

RTS

CTS

DTR

DSR

GND

TD

RD

RTS

CTS

DTR

DSR

GND

3

7

8

4

6

5

3
TD

RD 2 2

7

8

4

6

5

3

2

7

8

4

6

5

2

3

4

5

20

6

7

9-pin 9-pin 9-pin 25-pin

DTE DTE

TD

RD

RTS

CTS

DTR

DSR

GND

TD

RD

RTS

CTS

DTR

DSR

GND

Figure 16.9 RS-232 communications with handshaking

174 Mastering Pascal

 The 8250 IC is commonly used in serial communications. It can either be
mounted onto the motherboard of the PC or fitted to an I/O card. This section
discusses how it is programmed.

16.5.1 Programming the serial device

The main registers used in RS-232 communications are the Line Control Reg-
ister (LCR), the Line Status Register (LSR) and the Transmit and Receive
buffers (see Figure 16.10). The Transmit and Receive buffers share the same
addresses.
 The base address of the primary port (COM1:) is normally set at 3F8h and
the secondary port (COM2:) at 2F8h. A standard PC can support up to four
COM ports.

TD/RD Buffer Base address

Interrupt enable Base address+1

Interrupt Indentity Base address+2

Line Control Base address+3

Modem Control Base address+4

Line Status Base address+5

Modem Status Base address+6

Scratch Pad Base address+7

Base address
COM1: 3F8h
COM2: 2F8h

Figure 16.10 Serial communication registers

16.5.2 Line Status Register (LSR)

The LSR determines the status of the transmitter and receiver buffers. It can
only be read from, and all the bits are automatically set by hardware. The bit
definitions are given in Figure 16.11. When an error occurs in the transmis-
sion of a character one (or several) of the error bits is (are) set to a ‘1’.
 One danger when transmitting data is that a new character can be written to
the transmitter buffer before the previous character has been sent. This over-
writes the contents of the character being transmitted. To avoid this the status
bit S6 is tested to determine if there is still a character in the buffer. If there is
then it is set to a ‘1’, else the transmitter buffer is empty.
 To send a character:

RS-232 175

0 S6 S5 S4 S3 S2 S1 S0

Set to 1 when data
has been received

Set to 1 when transmitter
buffer contents loaded
into transmit register

Set to 1 when transmitter
buffer is empty

Overrun error

Parity error

Framing error

Break detected

Figure 16.11 Line Status Register

 Test Bit 6 until set;
 Send character;

A typical Pascal routine is:

 repeat
 status := port[LSR] and $40;
 until (status=$40);

When receiving data the S0 bit is tested to determine if there is a bit in the re-
ceiver buffer. To receive a character:

 Test Bit 0 until set;
 Read character;

A typical Pascal routine is:

 repeat
 status := port[LSR] and $01;
 until (status=$01);

Figure 16.12 shows how the LSR is tested for the transmission and reception
of characters.

16.5.3 Line Control Register (LCR)

The LCR sets up the communications parameters. These include the number
of bits per character, the parity and the number of stop bits. It can be written
to or read from and has a similar function to that of the control registers used
in the PPI and PTC. The bit definitions are given in Figure 16.13.

176 Mastering Pascal

TX buffer RX buffer

Character to be
transmitted

Character
received

1

Transmitter Receiver

1

LSR

LSR

Test S0 to determine
if the RX buffer is full

Test S6 to determine if
the TX buffer is empty

Figure 16.12 Testing of the LSR for the transmission and reception of characters

C7 C6 C5 C4 C3 C2 C1 C0

Set bits per word
00 – 5 bits, 01 – 6 bits
10 – 7 bits, 11 – 8 bits

Parity bit
0 – No parity
1 – Parity

Parity type
0 – Even parity
1 – Odd parity

Break
0 – Normal output
1 – Send a break

Stick bit
0 – No stick bit
1 – Stick bit

Stop bits
0 – 1 stop bit
1 – 1.5 stop bits

Register address
discriminator

Figure 16.13 Line Control Register

 The msb, C7, must to be set to a ‘0’ in order to access the transmitter and
receiver buffers, else if it is set to a ‘1’ the baud rate divider is set up. The
baud rate is set by loading an appropriate 16-bit divisor into the addresses of
transmitter/receiver buffer address and the next address. The value loaded de-
pends on the crystal frequency connected to the IC. Table 16.3 shows divisors
for a crystal frequency is 1.8432 MHz. In general the divisor, N, is related to
the baud rate by:

RS-232 177

 Baud rate
Clock frequency

N

=

×16

For example, for 1.8432 MHz and 9600 baud N = 1.8432×106/(9600×16) = 12
(000Ch).

Table 16.3 baud rate divisors

baud rate Divisor (value loaded into
Tx/Rx buffer)

110
300
600
1200
1800
2400
4800
9600
19200

0417h
0180h
00C0h
0060h
0040h
0030h
0018h
000Ch
0006h

16.5.4 Register addresses

The addresses of the main registers are given in Table 16.4. To load the baud
rate divisor, first the LCR bit 7 is set to a ‘1’, then the LSB is loaded into divi-
sor LSB and the MSB into the divisor MSB register. Finally, bit 7 is set back
to a ‘0’. For example, for 9600 baud, COM1 and 1.8432 MHz clock then 0Ch
is loaded in 3F8h and 00h into 3F9h.
 When bit 7 is set at a ‘0’ then a read from base address reads from the RD
buffer and a write operation writes to the TD buffer. An example of this is
shown in Figure 16.14.

TD buffer

TD3F8h
Write to TD/RD
buffer

RD buffer
RD3F8hRead from TD/RD

buffer

Figure 16.14 Read and write from TD/RD buffer

178 Mastering Pascal

Table 16.4 Serial communications addresses

Primary Secondary Register Bit 7 of LCR
3F8h 2F8h TD buffer ‘0’
3F8h 2F8h RD buffer ‘0’
3F8h 2F8h Divisor LSB ‘1’
3F9h 2F9h Divisor MSB ‘1’
3FBh 2FBh Line Control Register
3FDh 2FDh Line Status Register

16.6 RS-232 programs

Figure 16.15 shows the main RS-232 connection for 9- and 25-pin connec-
tions without hardware handshaking. The loopback connections are used to
test the RS-232 hardware and the software, while the null modem connections
are used to transmit characters between two computers. Program 16.1 uses a
loop back on the TD/RD lines so that a character sent by the computer will
automatically be received into the receiver buffer. This set up is useful in test-
ing the transmit and receive routines. The character to be sent is entered via
the keyboard. A CNTRL-D (^D) keystroke exits the program.
 Program 16.2 can be used as a sender program (send.c) and Program 16.3
can be used as a receiver program (receive.c). With these program the null
modem connections shown in Figure 16.15 are used.

RD

TD

GND

2

3

9-pin D-type
connector
(loopback)

RD

TD

GND

2

3

9-pin D-type
connector
(loopback)

RD

TD

GND

2

9-pin D-type
to 9-pin connection
(null modem without
handshaking)

RD

TD

GND

3

5

2

3

5

TD

RD

GND

2

25-pin D-type
to 25-pin connection
(null modem without
handshaking)

TD

RD

GND

3

7

2

3

7

RD

TD

GND

2

9-pin D-type
to 25-pin connection
(null modem without
handshaking)

TD

TD

GND

3

5

2

3

7

Figure 16.15 System connections

RS-232 179

2 Program 16.1
program prog16_1(input,output);
(* This program transmits a character from COM1: and receives *)
(* it via this port. The TD is connected to RD. *)
uses crt;
const TXDATA = $3F8; LSR = $3FD;
 LCR = $3FB; CNTRLD = #4;
var inchar, outchar:char;

procedure setup_serial;
begin
 port[LCR] := $80; (* set up bit 7 to a 1 *)
 port[TXDATA] := $0C;
 port[TXDATA+1] := $00;
 (* load TxRegister with 12, crystal frequency is 1.8432 MHz *)
 port[LCR] := $0A
 (* Bit pattern loaded is 00001010b, from msb to lsb these are: *)
 (* Access TD/RD buffer, normal output, no stick bit *)
 (* even parity, parity on, 1 stop bit, 7 data bits *)
end;

procedure send_character(ch:char);
var status:byte;
begin
 repeat
 status := port[LSR] and $40;
 until (status=$40);
 (*repeat until bit Tx buffer is empty *)
 port[TXDATA] := ord(ch); (*send ASCII code *)
end;

function get_character:char;
var status,inbyte:byte;
begin

 repeat
 status := port[LSR] and $01;
 until (status=$01);
 inbyte := port[TXDATA];
 get_character:= chr(inbyte);
end;

begin
 setup_serial;

 repeat
 outchar:=readkey;
 send_character(outchar);
 inchar:=get_character;
 writeln('Character received was ',inchar);
 until (outchar=CNTRLD);

end.

180 Mastering Pascal

2 Program 16.2
program prog16_2(input,output);
(* sender.pas *)

uses crt;

const
 TXDATA = $3F8; LSR = $3FD; LCR = $3FB;

var outchar:char;

procedure setup_serial;
begin

 port[LCR] := port[LCR] or $80;
 (* set up bit 7 to a 1 *)
 port[TXDATA] := $0C;
 port[TXDATA+1] := $00;
 (* load TxRegister with 12 *)
 (* crystal frequency is 1.8432MHz *)
 port[LCR] := port[LCR] and $7F
 (* set up bit 7 to a 0 *)
 (* bit 7 must be a 0 to access TxBuff or RxBuff *)
 (* serial port has been set up *)
end;

procedure send_character(ch:char);
var status:byte;
begin

 repeat
 status := port[LSR] and $40;
 until (status=$40);
 (*repeat until bit Tx buffer is empty *)

 port[TXDATA] := ord(ch); (*send ASCII code *)
end;

begin
 setup_serial;
 repeat
 outchar:=readkey;
 send_character(outchar);
 until (outchar=#4);
end.

2 Program 16.3
program prog16_3(input,output);
(* receive.pas *)

uses crt;

const
 TXDATA = $3F8; LSR = $3FD; LCR = $3FB;

RS-232 181

var inchar:char;

procedure setup_serial;
begin

 port[LCR] := port[LCR] or $80;
 (* set up bit 7 to a 1 *)
 port[TXDATA] := $0C;
 port[TXDATA+1] := $00;
 (* load TxRegister with 12 *)
 (* crystal frequency is 1.8432MHz *)
 port[LCR] := port[LCR] and $7F
 (* set up bit 7 to a 0 *)
 (* bit 7 must be a 0 to access TxBuff or RxBuff *)
 (* serial port has been set up *)
end;

function get_character:char;
var status,inbyte:byte;
begin

 repeat
 status := port[LSR] and $01;
 until (status=$01);

 inbyte := port[TXDATA];

 get_character:= chr(inbyte);

end;

begin
 setup_serial;

 repeat
 inchar:=get_character;
 write(inchar);
 until (inchar=#4);
end.

16.7 Exercises

16.7.1 Write a program that continuously sends the character ‘A’ to the
serial line. Observe the output on an oscilloscope and identify the bit
pattern and the baud rate.

16.7.2 Write a program that continuously sends the characters from ‘A’ to

‘Z’ to the serial line. Observe the output on an oscilloscope.

16.7.3 Complete Table 16.5 to give the actual time to send 1000 characters

for the given baud rates. Compare these values with estimated val-
ues.

182 Mastering Pascal

Table 16.5 baud rate divisors

baud rate Time to send 1000 characters (sec)
110
300
600
1200
2400
4800
9600
19200

 Note that approximately 10 bits are used for each character thus 960

characters/sec will be transmitted at 9600 baud.

16.7.4 Modify Program 16.1 so that the program prompts the user for the

baud rate when the program is started. A sample run is shown in
Test run 16.1.

: Test run 16.1
Enter baud rate required:
1 110
2 150
3 300
4 600
5 1200
6 2400
7 4800
8 9600
>> 8
RS232 transmission set to 9600 baud

16.7.5 One problem with Programs 16.2 and 16.3 is that when the return

key is pressed only one character is sent. The received character will
be a carriage return which returns the cursor back to the start of a
line and not to the next line. Modify the receiver program so that a
line feed will be generated automatically when a carriage return is
received. Note a carriage return is an ASCII 13 and line feed is a 10.

16.7.6 Modify the get_character() routine so that it returns an error

flag if it detects an error or if there is a time-out. Table 16.6 lists the
error flags and the returned error value. If a character is not received
within 10 seconds an error message should be displayed.

 Test the routine by connecting two PCs together and set the
transmitter with differing RS-232 parameters.

RS-232 183

 Table 16.6 Error returns from get_character()

Error condition Error flag
return

Notes

Parity error –1
Overrun error –2
Framing error –3
Break detected –4
Time-out –5 get_character() should time-out

if no characters are received within 10
seconds.

